Svemir, ipak se vrti

Universe and rotation (+34 articles 2019.+16.-18.y.) hot The universe is rotating, after all (2013/14/15 y.) Weitter Duckss's Theory of the Universe


Вселенная и вращение (+ 33 статьи) hot Вселенная всё-таки вращается (2013/14/15 г.) Теория Вселенной Веиттера Дуксса


Svemir i vrtnja (+ 34 članaka 2016/17/18/19) hot Objavljeni članci (2013, 14, 15.) Svemir, što je to (2010.) U potrazi za izgubljenim svemirom (knjiga 2008.) Weitter Duckss teorija svemira

Zadar's Theory of the Universe 2004, 2018 Zadarska teorija svemira (poveznice 2018.)
rast-tijela rast-tijela multisvemir-1

Now; In process

The Processes of Violent Disintegration and Natural Creation of Matter in the Universe

Author Weitter Duckss
Independent Researcher, Zadar, Croatia

This article completes the circle of presenting the process of the constant growth of objects and systems and the topics to complete it consist of the visible matter violent disintegration and its re-creation inside the Universe. A constant process of the visible matter disintegration is presented as the end of the process, the proportions of which are gigantic, and the creation of the visible matter as the beginning of it.
The disintegration of particles disturbs the balance of the Universe's wholeness; despite the enormous loss of the visible matter, the Universe is constantly growing.
After having postponed it for a while, this article discusses the age of objects and the Universe as a consequence of the process of the constant matter growth. The acquired results are completely different from those, offered by the renowned experts of the time.
The articles [3], [4] and [5], with this one, too, make the integral part of the complete circular process of matter growth inside and outside of our Universe.

Keywords: disintegration of matter; particle formation; the age of the Universe

1. Introduction
The goal of the article is to unite the total processes of the constant matter growth inside the Universe, based on the independent research, the use of databases of generally accepted, easily verifiable evidence for the broadest community of readers. This article is a summary of the materials inside the process of the constant matter gathering, with the articles [3], [4] and [5]), due to gravity or the law of universal gravitation.
The disintegration of matter is a process of turning the visible matter into the invisible matter and energy and it exists in the whole of the Universe. The loss of the enormous quantities of matter is replaced with the process of the visible matter constant growth out of the invisible matter inside the space or the whole of the Universe.
The age of the objects is analyzed through the time needed for matter to gather into dust, asteroids (comets) and increasingly larger objects, star systems, galaxies and finally the Universe.

2. The Disintegration of Matter
The existence of the process of disintegration or decomposition of matter is proved inside the small and large particle colliders. If the particles are influenced by the strong percussive force, then atoms (protons, electrons, neutrons) are decomposed after each collision into neutrinos and dark matter (invisible to our instruments).
Only in the process of the Sun's (as the object that emits waves) percussive waves to the atmosphere a significant quantity of matter gets disintegrated  (some 10 000 muons per m2 hits the surface of Earth every minute (the surface of Earth is ‎510 072 000 km²)). [1] 
In the period of 2,20 x 10-6 of a  second, muons are disintegrated into electrons and neutrinos:
μ - → e - + νe + νμ
μ + → e + + ν e + ν μ [2]
A chemical composition of atmosphere (Earth: N2 78,08%; O2 20,95%; Ar 0,934%; CO2 0,0408%; ~1% of vapor) is the first to be exposed to the percussive waves (above 200 km) consisting of the atomic oxygen (O), helium (He) and hydrogen (H) [3]. It can be found out from the chemical composition of the outer atmosphere, which particles muons are created from. These are the particles that are exposed to the percussive waves first. The impact of the waves to the atmosphere (to the particles, the visible matter) also creates light, heat and ionizes particles. [4]
The disintegration of particles also takes place when two objects (asteroids, planets,...) collide.  
There is a significant disintegration of particles when objects fall into fast cyclones and also at fast rotating stars and when stars fall into fast rotating cyclones of the galactic centers. These cyclones are situated on the northern and southern poles of the gas giants, stars and galactic centers.
There is an infinite quantity of particles' collisions in the explosion of a star, percussive values of which are of the higher or even value as those in LHC. These collisions lead to the disintegration of large quantities of the star's mass (the most of its total mass).  
To date it has been discovered (total number until today) just over 400 novae in the Milky Way. [5]
The information about the total quantity of the disintegrated visible matter can be found in the previous article  (or (real data) ~400 x (factor 3) = 1200 x ~100 billion galaxies in the Universe x min. 8 M Sun > 8 493 galaxies of the Milky Way size), an approximately real value of the disintegrated visible matter in the Universe caused by the explosions of stars.

3. A Creation of Visible Matter
That contemporary understanding of the Universe is seriously out of balance can be deducted from the facts of the Universe constantly expanding, gaining mass, from the omnipresent disintegration of the visible matter and the constantly ascending process of matter and system gathering. On one hand, enormous quantities of the visible matter get disintegrated every second, but on the other side, there is a constant growth of the visible matter, through objects and systems.
A disbalance is again noticeable in the following: "A chemical composition of a nebula is quite balanced; a fact which, by the way, follows the general composition of the Universe, which approximately consists of 90 %  of hydrogen atoms and almost all of the rest is helium (~10%) with oxygen, carbon, neon, nitrogen and other elements, which, put together, make two atoms per one thousand of them". [6]
A chemical composition of stars: (Sun Photospheric composition (by mass): Hydrogen 73.46%, Helium 24.85%, Oxygen 0.77%, Carbon 0.29%, Iron 0.16%, Neon 0.12% …); there is again a significant discrepancy between their chemical compositions and the compositions of the remainders after the explosions of stars and also those of nebulae and the Universe.
Until now it has been discovered a bit more than 400 remainders of super novae in our galaxy (a total number of stars in our galaxy is 200-400 billion), which does not by far match the total mass of 3-5% of interstellar matter in the Milky Way. A chemical composition of nebulae and stars tell us that the explosions of stars significantly reduce the diversity of elements, existing on a star prior to the explosion.
It is very important to say here that the diversity of a chemical composition of stars is significantly lower in the terms of quantity, ratio and complex atoms, than the ones of the objects that are in the orbit of a star.  [3] 
The claims that complex elements are created in the explosions of stars and that they arrived to our planet, without having analyzed the chemical composition of all the objects in our system, are unrealistic. Uneven and different chemical compositions of the Sun and its orbiting objects deny such a hypothesis. Relating the existence of complex atoms to the remainders of the stars' explosions is incorrect, because the chemical composition of the remainders, left after a star has exploded, is in a total discrepancy with the composition of objects in our system and because, if that were the case, the chemical composition of all the objects would have been the same, which is disproved by the research and the evidence. [7]
The creation of complex elements is seen in the process of removing the volatile elements of the comets, which is violent and voluminous at the beginning. When a comet has made enough orbits around a star, the quantity of volatile elements in it is reduced and it turns into an asteroid. It should be pointed out that a chemical composition of a comet gets more complex with every turn around the Sun, which is at the end represented in the chemical composition of the asteroid. [8]
The impossibility to relate the chemical compositions of planets and stars with the compositions of nebulae and interstellar material indicates that there is a process of creating new visible matter. That is particularly seen from the chemical composition of a material, which is outside the objects in the space. The first complex particle in the creation is hydrogen (in the atomic state), the fact demonstrated by the presence of this particle in nebulae, between objects and inside the Universe (90%). During time, the creation of the other particles  follows the ratio:  helium ~10% and all the other elements are only in traces, up to 2% maximum (Sun ~1,7%).
A greater diversity of all elements starts to appear when, due to the forces of attraction, the objects orbiting around a star start appearing in the orbits around the stars (high temperatures decompose complex atoms).
The greatest diversity is found on the objects (i.e., in their crust) that have a melted core, have an independent rotation and are mostly closer to a star. The creation of complex atoms takes place in the crust of such an objects, due to the pressure of the melted core on the crust, which itself is like a laboratory for the creation of complex atoms and compounds. A part of creation also takes place in the contact of the melted matter with water, atmosphere, ... This is seen on Mars, which has no melted core nor there are dynamic geological processes, necessary to create large quantities of complex atoms and compounds. Small quantities of hydrogen quickly migrate from Mars towards the Sun or get decomposed because of the radiation waves and they leave the planet with deserts and without water or compounds based on hydrogen.(supplement  1)

4.  Processes Related to the Constant Ascending Process of Matter Gathering
The process of matter gathering is seen on Earth and in the outer space. Matter gathers into nebulae, small and large objects, small and large systems. [9]  It can be deducted from the percussive craters on Earth and the other objects in our system.
Impact craters 
Figure 1. Percussive craters on some objects (NASA)
Percussive craters have covered completely such objects that lack atmosphere, independent rotation, that have a relatively solid surface and only minimal internal geological processes to remove the craters. A constant growth is presented by old craters, inside which new ones have appeared. Inside these new ones there are even newer ones... The frequency of such objects arriving to Earth (measured in their quantity, mass and the time interval in which they are appearing) makes it possible to conclude that the period of creating such reliefs on these objects is quite long and that it is a constant process. The duration of process is seen from the daily arrival of the space material onto Earth (quantity estimates ranging from 50 to 300 tons per day [3]).
Udarni krateri
Figure 2. Craters (NASA)
With the increase of an object's mass and also with the participation of tidal forces from the central object and the other objects, too, as well as the speed of rotation around its axis, such an object starts emitting the surplus of its own radiation, which is the indicator of a melted (hot) core being created  (Jupiter, Neptune). The core melting with the significant influence of tidal forces is seen on Venus, which is smaller than Earth and lacks its own rotation, but it has a significantly higher temperature and more active volcanic processes than Earth. A lack of mass is impossible to compensate with a rotation and tidal forces, which can be monitored on Mars, Mercury, Uranus, ... – these objects emit no significant radiation (Uran 1,06), at least they are less important than those incoming from the central object. The existence of melted core (i.e., matter) is the beginning of the process of creating hot objects from brown dwarfs to the largest stars and stars with a very fast rotation („O“ type ~0,00003% from the total number of stars in Milky Way).
A rotation of an object around its axis creates orbits for smaller objects and matter around a central object, creates also binary systems, globular clusters of stars, galaxies, clusters of galaxies, super clusters of galaxies, the Universe, Multiverse and, at the most, two systems more. When the objects that emit radiation (which creates light and heat in the collision with the visible matter) get diluted, the outer space and the visible matter that emits none of its own radiation have the temperature of 0°K and all of the processes either stop or become extremely slow.
One should always keep in mind that this is only one in the endless sequence of such or similar systems that exist in the Absolute zero.
Tidally locked objects (i.e., those that lack their own independent rotation) or those with an extremely slow rotation cannot create orbits, just as the objects with a rotation cannot create orbits around their poles (north – south).  

5. The Age of Objects and the Universe
A constant growth or a constant matter gathering, in contemporary terms of understanding the age of Universe, is a very slow process without any form of sensationalism and ascribing supernatural abilities to the laws of physics (nature). As a starting point in determining the age of the Universe I will use the agreed age estimate for the asteroids and the materials from the Moon, which is about 4.5 billion of years. The quantity of matter, which is daily arriving to Earth, is 50 to 300 tons per day.
It needs to be mentioned that in certain phases growth has a different pace, which is also different in the whole volume of the Universe. The same goes for any object in a star system. For example, an object existing in an asteroid belt has a different growth pace than the one existing in a gaseous disk outside that belt, no matter be it internal or external objects. 
When matter gets gathered into clouds (nebulae), the forces of attraction become stronger. The larger the object and the faster the rotation, the influence of the forces of attraction is more significant.
It would be much easier to determine the age of Earth if we were able to measure the age of melted matter. The rock, originated from lava, is 0 years old, equally today and 4 Gy ago (zircon from the Jack Hills Western Australia „Dashed line indicates 4.4 Ga(y) apparent 207Pb/206Pb age“ [11]).
If we were to adapt the matter gathering to the growing mass (an asteroid with 4,5 Gy of age) and the daily arrival of matter to Earth, which is 50 to 300 tons per day, we would have the approximate result of 6 x 1024 of years (1024: in short scale :  a septillion ; in long scale :  a quadrillion of years). It should be mentioned here that larger objects „steal“ matter (H2 and He) from smaller objects, which changes the approach in determining the age for each object.
The diameter of the Universe is calculated to be about 13,7 G ly.
The Universe rotates at the speed of up to 30.000 km/s [5] (which is far below contemporary data that do not consider that distance contributes to the increase in red  spectrum). That speed is sufficient to create a disk-shaped form of the Universe.
To achieve a disk-shaped form of a system, it takes, besides the speed of rotation, a large number of turns around some axis. The approximate diameter of the Universe is about 27 Gly (r  is ~13,7 Gly). Besides the process of constant growth, the processes of disintegration and the creation of matter  should also be included in the calculations about the Universe. With an approximate speed of rotation reaching 10% of the speed of light, the Universe makes a single turn in ~ 860 Gly. This number needs to be multiplied with a very large number of turns around its axis. ..

6. Conclusion
Particles are disintegrated by force due to the percussive waves from stars to the atmospheres of the objects in their orbits, due to objects' collisions, due to cyclones in the objects' polar regions, due to explosions of stars and due to our particle colliders.
The creation of the visible matter is seen in the increase of mass of the Universe and its chemical composition (H ~90%; He ~10%, the rest of the elements are in traces, up to 2%).
A constant, ascending growth (the consolidation of objects and systems) is registered as the arrival of matter to the formed objects, which is proved by the millions of percussive craters on the objects, by the processes of collisions, merger and interaction of objects, galaxies and the clusters of galaxies.
The distance between the objects in the outer space creates a red shift; after some distance (= 70 Gly), no matter whether galaxies are approaching to the observer or not, which is concluded from the collisions, mergers and interactions of galaxies and the rotations of galaxy clusters and their collisions, mergers and the creation of super clusters.
The age of Earth and other objects is determined by the time needed to gather matter, influenced also by the constant forces of attraction. Every object has a different growth pace, which depends on its position in a system or the position of the system in the Universe.

The age of the Universe is determined by the constant growth, creation and disintegration of matter and the time needed to gather a whole system with a disk-shaped form, due to a relatively fast rotation. ______________________________________________________________________________________________

Supplement 1.
The lack of O2
Titan moon has a chemical composition of atmospheres by volume:
98.4% nitrogen (N2),
1.4% methane (CH4),
0.2% hydrogen (H2);

Lower Tropospheres:
95.0% N2,
4.9% CH4;

(97% N2,
2.7 ± 0.1% CH4,
0.1-0.2% H2)
The temperature on Titan (Saturn Moon) is -179.5 ° C.
The lack of H2
The minimal temperature on Mars is -143°C, while the average and maximal one are -63°C and +35°C respectively. The chemical composition of its atmosphere is:
carbon-dioxide 95,97%;
argon 1,93%;
nitrogen 1,89%;
oxygen 0,146%;
carbon-monoxide 0,0557%,
which in total makes 99,9917% of the elements and compounds, present in its atmosphere.

(The geological composition of the Mars surface: Mars is a terrestrial planet, consisting of the minerals of silicon and oxygen, metals and other elements that usually form rocks. The plagioclase feldspar NaAlSi3O8 to CaAl2Si2O8; pyroxenes are silicon-aluminium oxides with Ca, Na, Fe, Mg, Zn, Mn, Li replaced with Si and Al; hematite Fe2O3, olivine (Mg2, Fe2)2SiO4; Fe3O4.  Etc.  [10] ___________________________________________________________________________________________________

[1]. New Evidence for the Existence of a Particle of Mass Intermediate Between the Proton and Electron, J. C. Street and E. C. Stevenson, Phys. Rev. 52, 1003 – Published 1 November 1937
[2]. H. Yukawa, PTP, 17, 48 1935 On the Interaction of Elementary Particles H. Yukawa (Received 1935)
[3].,  „Why do Hydrogen and Helium Migrate“ the Intellectual Archive W. Duckss
[4].   „How are the spiral and other types of galaxies formed?“ 2.8. Light W. Duckss
[5]. „Effects of Rotation Araund the Axis on the Stars, Galaxy and Rotation of Universe“ 3.1 The Disintegration, Formation and the Constant Growth of Matter and the Objects in the Universe, W. Duckss
[6]. Nebula, astronomy, written by: John S. Mathis
e_of_the_objects_in_our_system W.Duckss
[8]. Astr. Soc. DOI:10.1093/mnras/stx2640
[10]. W.D.
[11]. GSA Data Repository 2018087 Ge et al., 2018, A 4463 Ma apparent zircon age from the Jack Hills (Western Australia) resulting from ancient Pb mobilization: Geology,


Why do Hydrogen and Helium Migrate from Some Planets and Smaller Objects?
Author Weitter Duckss
Independent Researcher, Zadar, Croatia
Project: The Intellectual Archive Journal March/April 2019.

This article analyzes the processes through measuring the material incoming from the outer space onto Earth, through migrating of hydrogen and helium from our atmosphere and from other objects and through inability to detect the radioactive effects on stars and objects with melted interiorities. Habitable periods on such objects are determined through the processes. 

1. Introduction
The goal of the article is to give arguments, based on the existing data bases, that a constant growth of space objects, as well as their rotation and tidal forces, cause their warming up and radiation emissions, therefore making radioactive processes of fission and fusion – which are not detected on stars and other objects anyway – unnecessary.  The article gives evidence of hydrogen and helium migrating towards the objects that have more mass and of temperature levels of stars being directly related to their chemical compositions and the objects in their orbits. The argumentation to support a habitable period will be derived from the natural processes of constant growth and matter gathering.

2. Why there is no radioactive emission, derived from the processes of fission and fusion, inside stars?
Data bases indicate that astronomic research (or, evidence) support the existence of a constant (monotonous), omnipresent, slow gathering of matter. The processes are "more accelerated" in such part of the Universe where there is more matter gathered (in the form of nebulae, molecular clouds, etc.) during a long period of time, but gathering takes place constantly in the whole volume of the Universe as well. The undisputed evidence of omnipresent gathering are millions of craters on the planets and smaller objects in our system. That process is further supported by the space material incoming daily from the outer space to our planet, with its quantity estimates ranging from 50 [1] to 300 [2] tons per day. Collision and merger of smaller and bigger objects, stars, galaxies [3] and the clusters of galaxies [4] is omnipresent in the whole volume of the Universe. 
The processes related with an object's mass and rotation are realized inside the constant process of gathering. [5]  Every object and system rotate around their respective axes, except the tidally locked objects. When an object has gathered a certain quantity of mass and if there is an adequate speed of rotation, it starts emitting radiation. That happens with the objects, which masses are smaller than the mass of Neptune (Neptune emits about 2,61 times more energy than it receives from the Sun), depending on the speed of rotation around their respective axes  (HD 192310 c, HD 10180 g, OGLE-2005-BLG-169Lb, OGLE-2017-BLG-1434L bBD-08 2823 b). When an object is influenced by the strong tidal forces, along with its mass and the rotation around the axis, the object melts its interiority (Y brown dwarfs, Earth, Venus) at the masses that are smaller than those of Earth or Venus (Kepler-70b 0,44 M Earth, temperature 7.662°K, semi major axis 0,006 AU). When an object's rotation speed increases, it decreases the quantity of mass needed for the object to start emitting more radiation than it receives from its main star, i.e., to start creating its own internal processes that result with radiation. If rotation is slower, it takes more mass. It should never be neglected that the outer space has its own temperature, which is higher near a star, and it gets lower (except the thermal deviation; Sun 1 - 5,2 AU [6]).
Radiation and light are not the same thing. There is no light and it is very cold just outside the atmosphere of Sun (outside Earth ... or off the surface of an object that has no atmosphere) (the lowest temperature on Mercury is 80°K). There is no light where radiation is minimal (extremely weak). Light appears on the visible matter (nebulae, planets, ... ) when it gets affected by radiation. The stronger the intensity of radiation waves, the more intensive the visible matter radiates.
Sun does not emit gamma radiation, except from sunspots [7], it emits X-radiation ,  ultraviolet, visible and infrared radiation  and radio waves.
The strongest flashes (and gamma radiation within them) can barely be detected in the total of the Sun's radiation ("the solar constant"). The total of radiation emitted from the sunspots is only one tenth of the energy emitted by Sun per second. [8] The radioactive processes of fission and fusion are supposed to be followed with enormous radioactive radiation and they should be taking place within Sun, in the core with a diameter, which is 20-25% of the Sun's radius (radius of Sun is  696.342 km). [9] Although gamma radiation, emitted from the sunspots, are relatively minor and hidden in the total of the Sun's radiation, they get detected by the instruments, nevertheless. However, these instruments seem to fail to detect radioactive radiation, supposedly emitted by the object, which diameter is about 300.000 km long. During the period of 4,6 billion of years (the officially recognized age of Sun) [9], the radioactive pollution would pollute a star, as there are no obstacles to prevent the dislocation of matter from the Sun's core to its surface to happen. In all examples of the process of warming up, a warmer fluid or plasma migrates from the warmer parts to the colder ones, in the process

of equalizing temperatures. Independent of the statements about the core density, no element or compound is able to maintain its solid state at the temperatures that are many times higher than their boiling points (the forces of pressure in the Sun at the depth of 200.000 km are 0,2 g/m3 [10]). All hot elements and compounds, gaseous and liquid alike, migrate towards the surface, while the matter, which is cooled down, goes lower into the interiority of a star (the circular process of equalizing temperatures).
It is also necessary to accept the evidence, provided by astronomers, that stars generally are not radioactive, i.e., radioactive pollution is not detected on them, regardless of their type.
The existence of gamma radiation discharges, which are extremely rare events, can easily be explained with the processes that do not require radioactive pollution of stars. These discharges are related to the poles of fast-rotating stars and galaxies (quasars), and, to a much lesser extent, to the flashes of the stars' spots.  The similarity of these two processes is obvious. A fast drift (change) of matter from these spots is similar to the influx of matter into cyclones of fast-rotating stars, where a separation of elements takes place. The influx of a star into a cyclone of a quasar or another fast-rotating galaxy creates flashes of gamma (and all other types of) radiation. The discharge amounts are related to the speed of cyclone and the quantity of newly arrived matter to the eye of the cyclone. 
Our Earth (also: Venus, Jupiter, Neptune) is a good example to prove that melted matter is not radioactive and the processes of warmer melted matter and gas being dislocated are omnipresent.
Quote: The forces of pressure, rotation and the forces of attraction create high temperatures, create and determine the systems' appearance, determine the size of radius, surface gravity, the force of magnetic field, chemical composition and the color of objects and a star. Larger objects disintegrate complex compounds and atoms into hydrogen and some helium, due to temperatures above the boiling point of elements and compounds. The rest (approximately 1-1,5%),
Sun photospheric composition (by mass): 0.77% oxygen; 0.29% carbon; Iron 0.16%; Neon 0.12%; Nitrogen 0.09%; 0.07% silicon; 0.05% magnesium; Sulfur 0.04%) are also less complex atoms. A sum total of an object's mass, the forces of attraction and the speeds of rotation determine the conditions when a small orbiting object turns into a star. The mass of an object and the speed of its rotation determine the limit when an independent object starts emitting radiation (i.e., starts radiating). [5] end quote

3. The migration of hydrogen and helium
When comparing the data from data bases about the chemical composition  of the atmospheres (and surfaces) of different objects, it is impossible to ignore the specificity (regularity) that is related to the elements, existing in the atmosphere of an object.
The Sun and gaseous planets (gas giants) – as far as their higher layers, which are the ones that can be successfully measured, are concerned – are mostly made of hydrogen and helium (atmosphere by volume: Jupiter, 89% ± 2.0% hydrogen (H2 (molecular hydrogen), 10% ± 2.0% helium (He); Saturn, 96.3 ± 2.4% hydrogen (H2), 3.25 ± 2.4% helium (He); Uranus, 83 ± 3% hydrogen (H2), 15 ± 3% helium (He); Neptune, 80% ± 3.2% of hydrogen (H2), 19% ± 3.2% helium (He), Sun, He 24,85 % , H 73,46% (atomic hydrogen). The other objects have almost no hydrogen in their atmospheres and helium is registered only in traces (Titan H2 0,2%, Earth H2 0,53 ppm,  Venus has no H2 and in Mercury's atmosphere only in traces, Mars has no hydrogen, neither molecular nor in compounds nor on the surface, Ceres has no atmosphere, Pluto has no H2. H2 is also lacking on the other smaller objects (Moon, the moons of Jupiter, etc.).
It is known that on Earth there are processes that create large quantities of hydrogen through hydrogen-based compounds: H2O, CH4, other hydrocarbons (oil, gas), NH3 etc.). These processes also create large quantities of H2 but it is almost lacking from the atmosphere (0,53 ppm). The existence of the large quantities of H2 results in a proportional appearance of helium (9/1 H/He, which is approximately their average ratio for the whole Universe), but there is no helium in the atmosphere of Earth. There are  ~1% of hydrogen and ~1,84% of helium appearing in the process of natural gas extraction  [11].  Despite of large production of hydrogen and helium, and a constant release of these gases into the atmosphere as well, their share in the atmosphere remains unchanged. The loss of hydrogen from the atmosphere of Earth is estimated to be 3 kg/s and the one of helium 50 g/s. [12]
It can be concluded from the existence of melted core of Earth, ever higher average temperatures and shortening the duration and extent of the ice ages [13] that the total factors, which influence the temperature, are constantly growing. There are no data to support the rotation acceleration of Earth (scientists are more inclined towards its deceleration). The same goes for the rotation of Sun, although geologists and astronomers believe that the influence of Sun is constantly increasing (Sun increases its light by 10% every billion of years) [14]. The increase of the pressure forces grows with the increase of mass, which is registered to be a material incoming from the outer space. In the process of the constant growth, it can be determined that the increase of the mass of Earth is significantly larger than its total material losses. 
With regards to the distance of an orbiting object from its main object, the level of space temperature around such an object (~ minimal temperatures) and the rotation of the object, it can be concluded that hydrogen and helium are found in the atmospheres of the objects with a significant quantity of mass (the planets with impressive atmospheres and Sun). The distance from a main object does not stop the migration of hydrogen and helium to the direction of a main object or the closest object with a sufficient quantity of mass. It is concluded from the atmosphere compositions of internal planets and the satellites of gas giants. There are processes of hydrogen production on Titan (0,2% in its atmosphere) but it migrates towards Saturn. Smaller quantities of hydrogen-based compounds are registered in the atmosphere of Pluto (methane 0,25%, ethylene 0,0001%, acetylene 0,0003%, etc [15]) which confirms the existence of the process of creating hydrogen, but the mass of Pluto is insufficient to hold hydrogen and helium in its atmosphere, even though the distances from larger objects are very large and the space temperature is very low. Hydrogen and helium migrate towards the heavier objects, independent of the orbital distance, the level of temperature of such an object and the space around it and the rotation speed around its axis. In our system, the interstitial medium is almost pure vacuum.[16] It means that migrations do not go aimlessly into the space, but towards the heavier objects. It can be read from the chemical composition of the atmospheres of the largest planets that they successfully hold hydrogen and helium, independent of the influence of solar wind, the force of magnetic field and the level of temperature.

4. A habitable zone
To understand the process of life creation, one must understand the process of hydrogen migration, thermal deformations [6], the influence of space temperature on the atmosphere, structure and the rotation of an object [5].
Internal planets have no possibility to create water (in significant quantities) if they lack a melted core, very active geological processes and independent rotation around its axis, because hydrogen, created on the objects with the small quantity of mass, constantly migrates towards Sun. In our system, an independent rotation starts a bit outside the orbit of Venus. The appearance of a planet's independent rotation depends on the mass of Sun and that of the planet and the speed of rotation around the axis of the star. Mars is an equally  sterile planet in the orbit of Earth, due to the lack of mass. In the orbit of Mars, Earth would be a frozen object, due to the lack of mass and the lesser effect of the tidal forces (binary effect). Outside the region of thermal deformation (in our system, it is behind the asteroid belt), low temperatures do not support the appearance of oxygen, but support the appearance of hydrogen-based compounds, due to the difference in temperatures of space (< minimal temperatures of planets (the temperatures of space are approximate to the minimal temperatures of their distant satellites): Jupiter -108—161°C; Saturn -189°C; Uranus  -197,2 to -216°C; Neptune -201 to -218°C …) and the boiling point of hydrogen, -252,87°C (when talking about the oxygen compounds, there are only 0,0004% ± 0,0004% H2O on Jupiter; Saturn, Uranus and Neptune have water only in traces; Titan lacks oxygen-based compounds; in the thin atmosphere of Pluto there is only 0,05 -0,075% CO (estimated in 2015.[17]) from the binary effect with its moon, Charon. The melting point of oxygen is at -218,79°C and the boiling point at -182,962°C. The temperatures on Jupiter (and its satellites) and Saturn with its satellites are above the boiling point of oxygen, which means all of oxygen would be in the atmosphere without a process to remove it from there and crystallize it on the surface, or it would be a part of compounds (mostly water, since hydrogen is the most represented element there and helium is inert). Traces or extremely small quantities of oxygen and its compounds in the area outside the thermal deformation are the indicator there are some minimal processes of oxygen appearance in this zone after all. One of them is SO2 (its melting point is at -72 and its boiling point at -10°C) on the moon of Io from the tidal forces of Jupiter and Europa.
For life to appear in the thermal deformation zone, it takes a proper ratio of mass, the influence of tidal forces and the rotation of stars and planets.
An object needs to have more mass than Earth in the orbit of Mars for the conditions of melting down the interiority of the object to appear and for the geological processes to become very active. Although hydrogen would continue migrating towards Sun, a part of it would create compounds with oxygen, carbon, nitrogen, etc. That is, after all, a basic precondition to create life.
Habitable conditions are also possible for an independent object, placed in a space with a low quantity of matter; as a consequence, such an object would have a very slow rotation (these objects are classified as brown dwarfs). Under such conditions, the melting of the object's interiority is a result of the pressure forces (partially of the rotation, too) and a possible binary effect (Pluto – Charon). There are no processes of volatile elements migrating towards another object or aimlessly into space; all elements are held in the atmosphere and on the surface of the object. An object is habitable in the period before it becomes a star (while it still has a crust). (annex 1.) There are data, which suggest that objects in very distant orbits may realize such levels of temperature that are comparable to those of stars and it can further be concluded that these objects are also habitable in the period when they still have a crust.

5. Conclusion
The migration of hydrogen and helium is directed towards the objects containing more mass. The increase of the Earth's mass through the material incoming from the outer space is bigger than the total of all Earth's material losses. Every independent object and an object in the orbit, with an independent rotation around its axis, the object which is inside the region of thermal deformation, in some period of time is habitable. It is the period when such an object has a crust and the melted interiority, the consequences of which are intensive geological processes. An object's temperature is a result of the pressure forces, the object's rotation and tidal forces (binary effect). These inferences are derived from the measurements of stars, Earth and other objects, where there is no radioactivity that is supposed to be a product of the processes of fission and fusion, just as the following table state.

Annex 1.
Planets vs stars (temperature and mass)

Mass of Jupiter Temperature K Distance AU
1. 2M1207b 4 (+6;−1) 1600 ± 100 40
2 GQ Lupi b 1-36 (20) 2650 ± 100 100
3 ROXs 42Bb 9 1800-2,600  157
4 HD 106906 b 11 1800 ~650
5 CT Chamaeleontis b 10,5-17  2500 440
6 DH Tauri b 12 2750 330
7 HD 44627 13-14 1600-2400 275
8 2MASS J2126-8140 13,3±1,7 1800 6900 (> 4,500)
9 1RXS 1609 b 14 1800 330
10 UScoCTIO 108 b 14 2600 670
11 Oph 11 B 21 2478 243
12 HIP 78530 b 24 2800± 200 710± 60

Brown Dwarf
13 Teide 1 57± 15 2600± 150
14 2M J044144 19± 3/9,8± 1,8 2100/1800
15 OTS 44 11,5 1700-2300
16 DENIS-P J1058.7-1548 55 1700-2000

 Star Mass (Sun 1)
17 R Cygni  Cool giant 2.200
18 CW Leonis 0,7 – 0,9 2.200
19 IK Tauri 1 2.100
20 W Aquilae 1,04-3 1.800 (2250-3175)
21 T Cephei 1.5-1.8 2.400
22 S Pegasi  1,8 2.107
23 Chi Cygni 2,1 +1,5 -0,7 2.441-2.742
24 R Leporis 2,5 – 5 2.245-2.290
25 R Leonis Minoris  10,18 2.648
26 S Cassiopeiae loss at 3.5 x 10-6 
MSun per year

Table: Cold stars in relationship: mass/radius Sun=1). Planets at a great distance from the stars with high temperatures and different mass.

A few more examples cool Stars: RW Lmi 2.470°K;  V Hya 2.160°K;  II Lup 2.000°K;  V Cyg 1.875°K;  LL Pegasi 2.000°K;  LP And 2.040°K;  V384 Per 1.820°K;  W Ori 2.625°K;  S Aur 1.940°K;  QZ Mus 2.200°K; AFGL 4202 2.200°K:  V821 Her 2.200°K;  V1417 Aql 2.000°K;  S Cep 2.095°K;  RV Cyg 2.675°K  etc. 

Tables from my article (with minor modifications) [5] ____________________________________________________________________________________________________________

[1].  „What is a Meteor Shower?“
[2]. Cosmic Dust in the Terrestrial Atmosphere 
[4]. "The non-gravitational interactions of dark matter in colliding galaxy clusters" David Harvey, Richard Massey, Thomas Kitching, Andy Taylor, Eric Tittley
[5]. DOI: 10.18483/ijSci.1908   „Effects of Rotation Around the Axis on the Stars, Galaxy and Rotation of Universe“ W.Duckss
[6].  „The Processes Which Cause the Appearance of Objects and Systems“ W.Duckss
[7]. „NASA's Fermi Detects the Highest-Energy Light From a Solar Flare“ June 11, 2012
[8].  "The Multispectral Sun"
[9].   "Apsolutna kronologija i termička obrada čvrstih tvari u solarnom protoplanetarnom disku" James N. Connelly, Martin Bizzarro, Alexander N. Krot, Åke Nordlund, Daniel Wielandt, Marina A. Ivanova
[10].  „World Book at NASA“
[11].  "Composition of Gas from a Well at Dexter, Kan." D. F. McFarland. Transactions of the Kansas Academy of Science (1903-) Vol. 19 (1903 - 1904), pp. 60-62 (3 pages). doi : 10.2307 / 3624173 . JSTOR  3624173 
[12].  „Atmospheric Chemistry“ István Lagzi; Róbert Mészáros; Györgyi Gelybó; Ádám Leelőssy, Copyright © 2013 Eötvös Loránd University
[13].   Lockwood, J.G.; van Zinderen-Bakker, E. M. (November 1979). "The Antarctic Ice-Sheet: Regulator of Global Climates?: Review". The Geographical Journal. 145 (3): 469–471. doi:10.2307/633219JSTOR 633219.  
[14]. „The sun won’t die for 5 billion years, so why do humans have only 1 billion years left on Earth? Jillian Scudder“ Postdoctoral Research Fellow in Astrophysics, University of Sussex
[15]. Gurwell, M.; Lellouch, E.; Butler, B.; et al. (November 2015). "Detection of Atmospheric CO on Pluto with ALMA". American Astronomical Society, DPS meeting #47, #105.06Bibcode:2015DPS....4710506G.
[16]. „Environment
Outer space is the closest natural approximation of a perfect vacuum.“
[17]. Gurwell, M.; Lellouch, E.; Butler, B.; et al. (November 2015). "Detection of Atmospheric CO on Pluto with ALMA". American Astronomical Society, DPS meeting #47, #105.06Bibcode:2015DPS....4710506G.

Keywords: Migration of hydrogen; Habitable zone; Constant growth of matter; the effects of rotation;


The article has more than 9,000 visits (11/07.2018 - 2/28.2019.)
The Processes Which Cause the Appearance of Objects and Systems
Published in American Journal of Astronomy and Astrophysics.
Author, Weitter Duckss
Independent Researcher, Zadar, Croatia

The beginning of the formation of galaxies can be recognized in the planetary and stellar systems.
The rotation speed of a galactic center determins the form of a galaxy an the ongoing processes. The forces of attraction and the rotation of stars firstly form binary systems.
The objects that are locked down by their tidal forces or that posses an extremely slow rotation, i.e. they have no independent rotation – they don't have other objects orbiting around themselves; for example: Mercury, Venus and the majority of satellites.
A very fast cyclone rotation (in an elliptical galaxy) creates huge friction, whichheats up matter; that can be seen on quasars  and very fast-rotating small objects (stars) through the emission of radiation that takes place on the poles.
A vast number of stars and other matter (the center of a galaxy), when rotating around the common center, act as a single body, related to the rest of the galaxy.
A slow rotation of a galactic center (as in the stellar clusters) does not create a recognizable center (the center looks more like the ones of close binary systems), while the fast rotation creates the center that ranges from the northern to the southern pole of the center.
The speed of rotation is not exclusively responsible for the size of an object (a galaxy, a star,...) because a fast rotation is a characteristic of both dwarf and giant galaxies. The same goes for a slow rotation. The same principle applies to stars. There are big stars with different speeds of rotation, and the same goes for small stars. There are hot stars with very small mass, but there are also hot giant stars.
Cyclones (in the north and south poles of the galaxy nucleus) are responsible for acceleration and deceleration of galactical and stellar rotations (as well as the death of stars). The influx of hotter matter accelerates the rotation of an object (the influx of stars to the cyclone in the center of a galaxy).

1. Introduction
The goal of this article is to sum up the processes of the objects' formation in Universe, with a special review of galaxies. In this article, these basic laws of nature are used: a constant process of growth, valid for all objects in Universe [1]; matter attraction feature [2]; the effects of objects' rotation around their axes [3] and inside a system; a decrease of radiation intensity and temperature with the increase of distance from a source of radiation or temperature (an object that creates and emits radiation) [4]; the absence of light in Universe; a short debate on dark matter from the other angle [5]. I consider the rotation of objects as the central process which creates the systems of stars, galaxies, the clusters of galaxies, Universe, Multiverse,... ; it creates all systems, determines their appearance and, related to stars, their temperatures, radii, colors, orbital speeds of the objects around a star, their numbers, asteroid belts and gas disks.[6] 

2. The effects of rotation around an axis (objects) and a center (systems)
2.1. The formation of a system by rotation
The observation of the rotational effects can be done through the orbits of objects around a central object. All orbits (of an object) are placed around the equatorial region or cut through it if they are inclined, i.e., if there is an inclination from the equatorial plane. The speed of an object that approaches a central object has nothing to do with the appearance of the orbit, because if it did, we would have had orbits around the poles [7]. The objects that lack an independent rotation (i.e., the objects that are tidally locked) or have an extremely slow rotation have no possibility to take and hold other objects in their own orbits (for example, Venus, Mercury, internal satellites (tidally locked). 
Quote: These objects also have a speed, just as the objects that approach straight or with an inclination towards the equator do, but these speeds neither create orbits (new evidence, confirmation [8],  [9]), nor there are observations to support such claims. If there is no rotation, there is also no orbit, no matter what the speed of the incoming object is. end quote
The objects on their poles have no rotation related to the vertically incoming objects, therefore their collisions are almost the only option.
Quote: One object becomes a nova and a large number (millions) of others with the same parameters just go on the same way. It is necessary to consider some very rare factors, like, for example, the impacts of large objects into planets, but even more rare – those that hit only a small part of the objects (one event in more than ten million of objects - stars).
Within the growth of an object, some smaller object is starting a reaction when colliding with a star. If that should remain a rare event, it needs to be a specific event under the specific conditions. The only possible specificity is for that object (the errant objects, incoming from outside the Solar system) to arrive vertically onto one of the poles and to hit the opening of a cyclone that exists on the poles of stars. That way, it would get an opportunity to break into the interior of an object.
When discussing the vertical trajectories, it is necessary to point out that only the forces of attraction exist there, because an object creates the forces of repulsion in the horizontal direction only. end quote [10]  
A part of an object goes through a central object, due to a constant movement of a central object (Sun 220 km/s) and goes irreversibly further into space.

2.2. The effects of the stars' speed of rotation
A star's speed of rotation causes its temperature (its temperature only partially depends on the mass of a star), its radius (ratio: the mass of a star / the radius of a star; Sun = 1), surface gravity and the color of a star. The stars with a slow rotation are "cold" stars (with the exclusion of binary systems effects), independently of the mass of a star and its radius. Their color is red and they are dominant in Universe
(M type of stars, 0.08–0.45 masses of Sun;  ≤ 0.7 R of Sun; 2,400–3,700°K; 76,45% of the total number of stars in Milky Way (Harvard spectral classification);
all red stars above  0,45 M of Sun are also included here, as well as the largest red (and other) stars in our galaxy). The stars with fast and very fast rotations are mostly present in nebulae, i.e., in the space which is rich with matter. Their total quantity in Milky Way makes 3,85% (O class ~0,00003%). [11]   
A radius, related to mass (Sun =1) is negative, when stars with a fast rotation are the subject matter, while it is completely opposite with cold, red, slowly-rotating stars. [12]
A bit of a remark: the author of this article disagrees with the current estimates of the stars' mass, as he claims they are the product of old hypotheses which lacked enough evidence to support them. The author suggests that a radius be equal to a mass when discussing slowly-rotating stars and that the mass decrease up to 100% with fast-rotating stars. For example, Melnick 42, 21,1 R of Sun, its mass should be around 30 M of Sun (currently, 189 M of Sun).
That would give the option to avoid these illogicalities:

Table 1. Star, type / mass / temperature

  Star Type Mass Sun=1 Temperature °K

1. WR 2, WN4-s 16 141.000
2. μ Columbae O 16 33.000
3. Deneb A 19 8.525
3. Gamma Cassiopeiae B 17 25.000
4.  VY Canis Majoris M 17 3.490
5. DH Tauri b Planet; dist. 330 AU 12 M Jupiter 2.750
6. HIP 78530 b Planet; dist. 740 AU 24 M Jup. 2.700 (2.800)
7. NML Cygni M 50 3.834

Table 1. Stars, similar mass (except No 5, 6, 7), different classes (type) and temperatures.

A same or similar mass should produce the same or similar outcome, given other conditions are the same. These days, scientific community totally undervalues the rotation of objects and its effects.

Table 2. Stars, temperature/rotation speed/ surface gravity, mass/radius.  

  Star Mass, Sun 1 Radius, Sun 1 Temperature °K Rotation speed  km/s

  Stars with slow rotation
1. Arcturus 1,08 25,4 4.286 2,4
2. R Doradus 1,2 370± 50 2.740 340 day
3. HD 220074 1,2 49.7 ± 9.5 3.935 3
4. Kappa Persei 1,5 9 4.857 3
5. Aldebaran 1,5 44,2 3.910 634 day
6. Hamal 1,5 14,9 4.480 3,44
7. Iota Draconis 1,82 11,99 4.545 1,5
8. Pollux 2,04 8,8 4.666 2,8
9. Beta Ursae Minoris 2,2 42,6 4.030 8
10. Beta Andromedae 3-4 100 3.842 7,2
11. Betelgeuse

Fast-rotating stars

11,6 887 ±203 3.590 5
12. IK Pegasi 1,65 1,6 7.000/35.000 <32,5
13. Alpha Pegasi 4,72 3,51 9.765 125
14. η Aurigae 5,4 3,25 17.201 95
15. Eta Ursae Majoris 6,1 3,4 16.823 150
16. Spica secondary 6,97 3,64 18.500 87
17. Spica secondary 10,25 7,7 22.400 199
18. Gamma Cassiopeiae 17 10 25.000 432
19. WR 102 19 0,39 210.000 120
20. Zeta Puppis 22,5 – 56,6 14-26 40.000-44.000 220
21. S Monocerotis 29,1 9,9 38.500 120
22. Alnilam 30-64,5 28,6-42 27.000 40-70
23. Alnitak Aa 33 ± 10 20.0 ± 3.2 29.000 110 ± 10
24. HD 5980 C 34 24 34.000 120
25. HD 5980 A 61 24 45.000 250
26. HD 93250 83,3 15,9 46.000 130
27. HD 269810 130 18 52.500 173
28. VFTS 682 150 22 52.200±2.500 200
29. Melnick 42 189 21,1 47.300 240
30. R136a2  195 23,4 53.000 200

Table 2. Stars, relationship: temperature/rotation speed/surface gravity and mass/radius. No 1-12 cold stars, 13-29 hot stars.

The influence of rotation is more significant with stars that possess larger mass, because warming up and pressure are the result of friction, occurring between layers of a star. These stars that rotate faster will have higher temperatures than small stars, with the same or slower rotation (binary effects excluded).
Slowly-rotating stars have less significant surface gravity than the fast-rotating stars. [12]

Table3. Stars, temperature/rotation speed/surface gravity; mass/radijus

  Star Temperature °K Rotation km/s or day Mass, Sun 1 Radijus, Sun 1 Surface gravity cgs

1. Betelgeuse 3.140-3641 5 7,7-20 950-1200 0,5
2. Aldebaran 3.910 643 d 1,5±0,3 44,2±0,9 1,59
3. Pollux 4.666±95 558 d 2.04±0,3 8.8±0,1 2,685
4. Polaris 6.015 119 d 4,5 46±3 2.2
5. Canopus 7.350 8,0 9,0-10,6 71,4±4,0 2,1
6. Beta Pictoris 8.052 (9.790) 130 1,75 1,8 4,15
7. Denebola 8.500 128 1,78 1.728 4,0
8. Fomalhaut 8.590 93 1,92 1,842 4,21
9. Vega 9.692±180 12,5 h 2,135 2,36x2,81 4,1
10. Sirijus a 9.940 225-250 2.02 1,711 4,33
11. Albireo B 13.200±600 0,6 days 3,7 2,7 4,00
12. Sirijus b 25.200   / 0,978 0,0084 8,57

Table 3. Stars, No 1-7 low temperatures, small rotation speed, small surface gravity, in relation: radius>mass; No 8-16 high temperature, high Surface gravity, in relationship: radius<mass (Sun=1).

2.3. Gravitationally Bound Objects
Gravity and rotation  create systems. Super clusters of galaxies are the largest gravitationally-bound objects known today. The rotation of a cluster is different from zero. [13]

Table 4. Galaxy, distance /speed

  Galaxy Distance Mly Red shift km/s

1. NGC 4450 ~50 1954 ± 4
2. NGC 4262 50,0 1359 ± 4
3. NGC 4550 50.0 381 ± 9
4. Messier 89 50 ± 3  290 ± 5
5. NGC 4435 52 0.002638(z)
6. Messier 86 52 ± 3 -244 ± 5
7. Messier 61 52.5 ± 2.3  1483 ± 4
8. Messier 91 63 ± 16  486 ± 4
9. NGC 4388 65.10 ± 18.43 2.524

Table 4. Galaxy, relationship: distance 50-65.10± 18.43 Mly/speed of movement.

Table 5. Supercluster, galactical clusters, galaxy, redsfift/distance

  Supercluster (galaxy) Redsfift (z) Distance M ly

1 The Laniakea Supercluster +0,0708 250
2 Horologium Supercluster 0,063 700
3 Abell 754 0,0542 760
4 Abell 133 0,0566 763
5 Corona Borealis Supercluster 0,07 946
6 CID-42  0,359 3.900 (3,9 Gly)
7 Saraswati Supercluster 0,28 4.000
8 Einstein Cross 1,695 8.000
9 Twin Quasar 1,413 8.700
10 Lynx Supercluster 1,26 & 1,27 12.900

Table 5. The Universe, Supercluster, galactical clusters, galaxy: redsfift (z)/distance M ly(G ly).

Table 6. Galaxies, redsfift/distance/speed

  Galaxies Redsfift (z) Distance billion ly Speed km/s  

1 EQ J100054+023435 4.547 12,2 280.919
2 Q0906 + 6930 5,47 12,3 299,792 
3 Z8 GND 5296 7,5078±0,0004 13,1 291.622 ± 120 
4 GN-z11 11,09 13,4 295.050 ± 119.917

Table 6. The Universe, relationship: redsfift (z)/distance G ly/speed km/s.

Besides rotation, there is also the law of (matter) attraction, which causes collisions, larger and smaller fusions of galactical clusters and Supercluster. [14]  One should make a distinction between collisions, in which the orbits of objects or systems are different, and fusions, in which objects share the same orbit and gravity causes a soft fusion of objects (for example, 67P/Churyumov–Gerasimenko).
The accumulation is a constant growing process from the formation of particles, the accumulation of particles  into nebulae, ... , joining into (chemical) compounds, the formation of smaller and larger objects. Stars, star systems, binary stars which are the initial stage of the formation of star clusters, galaxies, galactical clusters and finally Universe are all created with the increase in mass and in the force of pressure (which depends on the speed of rotation). A part of matter gets disintegrated by the explosions of stars. These explosions cause even or more significant results than those, made by the collisions in LHC in Switzerland. [15]
Quote: Despite destruction (the disintegration of matter), the observations show that the Universe is not losing its mass. On the contrary, it increases. It means that the Universe is efficiently replacing all of the lost matter, the minimum of which is 20 quadrillion of the Sun’s masses, and even “some” more.
It is not to be forgotten that a smaller part of matter is also been disintegrated in the collisions of waves and particles. In order for the muons to be registered at all in the laboratories, a countless number of particle disintegrations needs to occur. It is an everlasting occurrence on the objects orbiting around a star from the beginning of time till these days and until a star becomes a nova. A good portion of matter is being disintegrated in the collisions of objects and galaxies. Therefore, the colossal dimensions are not related only to the creation of matter, but also to the growth of all objects within stellar systems, galaxies and the Universe. Millions of craters are only a reminder of that process being contiguous and ongoing. end quote [16]
The author of the article discusses the following two or at the most three wholes (Multiverse,...), based on the decrease of temperature and radiation intensity with the increase of distance from the source, on the constant growth of gravitationally related systems, on systems behaving as a single object in attracting matter, inside the space in which the temperature is 0°K and the processes are still or extremely slow. [17]
An object in an orbit can approach or distance itself from a central object. It depends on the influx of matter to the object. If an object in an orbit has a relatively low influx of matter from a central object, it starts falling slowly to the central object (Mars/ Phobos) and the process is opposite when the influx of matter is more significant on the object in the orbit – it starts moving away (Earth/ Moon) (similar to the relation of a pendulum and a weight). The same situation is with the systems, with a remark that a faster rotation accelerates the processes.
The law of low temperatures is manifested in star systems and galaxies; the objects have higher orbital speeds with lesser gravitational effects. The temperature, which is below the melting point of helium, 4,216°K, is responsible for it. The stars that are on the edges of galaxies, just as the objects on the edges of star systems, have higher speeds with lesser gravitational effects than their neighboring objects that are closer to the center. [18]

2.4. The formation of galaxies
Matter attraction gathers objects into systems and rotation regulates these systems. When a large number of stars rotate around the common center in a relatively small volume (i.e., in the centers of galaxies), they act as a single object and create systems similar to star systems. A galactical disk is created on the same principles as the orbits of objects around stars and asteroid belts or gas disks; rotation, the speed of rotation, the force of attraction. [19]  In a large majority of situations, central objects represent almost the whole mass of a system (Sun 99,86 %).
There are different galactical centers inside the general process of growth. Slow rotations create centers made of stars and other matter that look like the spherical groups of stars (there is a big difference in the speed of rotation) and they do not create a familiar-looking center inside the galactical center. [20]  Cyclones, that break down a large part of stars and create a completely new and the largest object in Universe, are formed by fast rotation on the poles of the galactical centers. [21] 
The speed of rotation is not exclusively responsible for the size of an object (a galaxy, a star,...) because a fast rotation is a characteristic of both dwarf and giant galaxies. The same goes for a slow rotation. The same principle applies to stars. There are big stars with different speeds of rotation, and the same goes for small stars. There are hot stars with very small mass, but there are also hot giant stars. The same applies to cold stars and those stars, which temperatures are somewhere in between.

Table 7. galaxies, type / rotational speed

  galaxies type galaxies Speed of galaxies

  Fast-rotating galaxies
1 RX J1131-1231 quasar „X-ray observations of  RX J1131-1231 (RX J1131 for short) show it is whizzing around at almost half the speed of light.  [22] [23]
2 Spindle galaxy elliptical galaxy „possess a significant amount of rotation around the major axis“
3 NGC 6109 Lenticular Galaxy Within the knot, the rotation measure is 40 ± 8 rad m−2 [24]

Contrary to: Slow Rotation
4 Andromeda Galaxy spiral galaxy maximum value of 225 kilometers per second 
5 UGC 12591 spiral galaxy the highest known rotational speed of about 500 km/s,
6 Milky Way spiral galaxy 210 ± 10 (220 kilometers per second Sun)

Table 7. galaxies, relationship: type galaxies / rotational speed of galaxies; No 1-3 Fast-rotating galaxies, No 4-6 Slow-rotating galaxies.

The speed of rotation affects the form of a galaxy and more dynamic processes inside such galaxies.

Table 8. Galaxies, type/ size

  galaxies type of galaxies speed of galaxies

  Large galaxies (fast-rotating)
1 APM 08279+5255 elliptical galaxy giant elliptical galaxy [25]
2 Q0906 + 6930 blazar the most distant known blazar
3 OJ 287 BL Lacertae object the largest known objects
4 S5 0014 + 81 blazar giant elliptical galaxy
5 H1821 + 643 quasar the most massive black hole

Contrary to: Dwarf galaxies (fast-rotating)
6 Messier 110 elliptical galaxy dwarf elliptical galaxy 
7 Messier 32 "early-type" dwarf "early-type" galaxy
8 NGC 147 spheroidal galaxy dwarf spheroidal galaxy
9 NGC 185 spheroidal galaxy dwarf spheroidal galaxy

Table 8. galaxies, relationship: type of galaxies/ size of galaxies; No. 1-5 Large galaxies (fast-rotating), No. 6-9 Dwarf galaxies (fast-rotating).

2.5. Changing the Structure of Galaxy, the Increase of Radiation Intensity With the Increase of the Speed of Rotation
With the increase of speed of rotation (including faster orbits of stars and changing the structure in the centers of galaxies) there is also the increase of intensity and quantity of radiation coming from the openings of a cyclone on the poles of a central structure of our galaxy.
If the diameters of a galactical central object are estimated to be a few tens of thousands of light-years, the nature of the Milky Way's bar is actively debated, with estimates for its half-length and orientation spanning from 1 to 5 kpc (3,000-16,000 ly [26]  or 40 thousand ly on the equator and 30 thousands ly (according to some other sources [27] ) from a pole to the other one. It's diameter: the size of a super-massive black hole is ~ 0,001-400 AU [28]   – there is a disparity between a central point (a black hole should be there) and a pole of the central structure of a galaxy (different occurrences and the beginning of different radiation emissions are measured there). The distance from the horizons (poles) and the center is 1.500 to 15.000 ly and more, when giant galaxies with a very fast rotation are discussed.
The emissions of radiation are measured on the poles that are 3.000 to 30.000 ly and more far from each other and that proves the existence of cyclones (cyclones and whirls on stars [29]). Cyclones (the eye of a cyclone) are the places of occurrence for all occurrences that have ever been measured (radiation emissions, star formations, etc.). Their existence have been confirmed on the poles of Sun, Jupiter, Saturn, etc. They are formed due to the rotation of an object – and galaxies, especially their centers, rotate.

2.6. Cyclones, Acceleration of Galaxies, the Increase of the Intensity of Radiation, due to the increase in rotation
Cyclones are responsible for acceleration and deceleration of galactical and stellar rotations (as well as the death of stars [10]).
The influx of hotter matter accelerates the rotation of an object (the influx of stars to the cyclone in the center of a galaxy; related to stars, objects heat up by passing through the atmosphere and photosphere of a star [29] ). It is known that hot and fast-rotating stars are mostly found in nebulae or other matter-enriched space.  Recent appearances of the objects from the outside of our system, A / 2017 U1 [30]  (1I / 2017 U1) [31]  (inclination 122.69°) and C/2012 S1 [32]  (inclination 62,4°) confirm that such events are no rarity even in the space, which is less matter-enriched.
The size of a galaxy (as well as stars) depends on the quantity of matter in the space around it (free stars, the clusters of stars, smaller and larger galaxies with or without a central structure, nebulae, etc.). Galaxies with a faster rotation experience stronger attraction forces and also the possibility to grow faster. That fact alligns them with the galaxies that are younger than those with a slower rotation – if there are similar masses or sizes and similar quantities of matter in their space. The same goes for the stars; the stars with a faster rotation grow faster – if other factors are similar. These similarities are present in our system, too, and are related to the planets with a faster rotation.
The formation of objects and galaxies occurs in a very cold space (the temperatures of 2-3°K ), it supports superconductivity (radiation expands at the speed of ~300.000 km/s), in space, waves and radiation lose their intensity with the growing distanceThe temperatures below 4,216°K (below the boiling point of helium) make it possible for the objects in that zone to move faster – if other conditions are similar – unlike the objects which temperatures are above 4,216°K. At galaxies and stars, these things happen on the edges of these systems, where the results of measuring the speed of objects indicate faster movement than of those objects, which are closer to the center of a system (The proof is accelerating Voyagers).

3.  Dark matter in space and Light
3.1. Dark matter
I give evidence for the connection of dark matter existence by the processes that are visible and measurable inside our system. If a part of space is (almost) empty, without the presence of matter (dark matter), there should exist the following: an even spreading of Sun radiation and independence of the temperature increase  due to radiation. The temperature of space can be observed indirectly. The easiest way to gain the result is to observe the temperature on the dark side of an object (the minimal temperatures).

Table 9. Sun system, temperature deviation, temperatures/ distance

  The body in orbit around the Sun Minimum temperatures °K Distance from the Sun AU

1 Mercury 80 (100 equator) 0,39
2 Moon 100 1
3 Mars 143 1.52
4 Vesta 85 2,36
5. Ceres 168 2,77
6 67P/Churyumov–Gerasimenko 180 3,46
7 Ganymede 70 5,20
8 Callisto 80±5 5.20
9 Triton 38 30,11
10 Pluto 33 39,48

Table 19. Sun system, temperature deviation, relationship: minimum temperatures °K/distance from the Sun AU.

These measurements of minimal temperatures show deviations from the accepted claims that the intensity of ("termal") radiation decreases with the square distance. Except Mars and Pluto, not all objects have enough quantity of atmosphere, which could cause doubt about the correct way of selecting objects in the example. If a factor of measurement imprecision is also taken into consideration, the deviations are still impossible to be removed as they show that the objects from the examples  1 – 5,20 AU have the same or higher minimal temperatures than Mercury and they are also of the lesser or similar mass. Mercury and Ceres are in a group of objects, which are explored equally well and in details; however, it is shown that the minimal temperature on Ceres is two times higher, even though it should be decreasing, according to the law of radiation intensity decrease with the increase of square distance.
If deviation is excluded and minimal temperatures are observed very roughly, it is obvious that there is a temperature decrease with the increase in distance: Mean Solar Irradiance (W/m2) on Mercury is 9.116,4, Earth  1.366,1, Jupiter 50,5, na Pluto 0,878. [33] 
At the end of our system, the temperature is estimated at less than 4 ° K.
The decrease of radiation intensity is (visually) the most notable when measuring the radiation of stars. The further the objects, the lower the intensity (with regards and correction of mass and temperature of a star). An example of deviation can also be found in the termosphere of our planet (although that example is (partially) solved in the way that a certain quantity of radiation, allocated to a lesser quantity of particles, results with easier temperature rise to higher temperatures). The examples from the table eliminate the claims that radiation dissipate with the increase of space  (67P/Churyumov–Gerasimenko is more than 3 AU further from Mercury and its minimal temperature is by 100°K  higher).
Quote: The existence of matter can be observed here, on Earth, too. A balloon, inflated 2-3 km deep under the water surface, will explode just before the surface or on it, due to the air expansion. The similar thing happens to the balloons, which are sent outside the atmosphere – they explode at the maximum altitude of 40 (104) km above the surface of Earth, due to the equalizing the pressures. There are different kinds of matter and different outcomes, but the final outcome is the same: the pressures get equalized. The balloons are moving in the direction, which is opposite to the activity of gravitation and they exclusively abide the law of equalizing the different pressures. The balloons "know" where is the less dense matter inside a volume. end quote [34] 
The termal deviation and the decrease of temperature from a source to the edges of a system indicate that there is a similarity between some processes in space and in the atmosphere (of Earth).  Due to the interaction of radiation with particles of atmosphere and object itself, matter warms up. Space also warms up, due to the activity of the same radiation and without visible matter being present. As radiation waves distance themselves from a source, the intensity of radiation decreases, as well as temperature (both minimal and maximal) of space and visible matter (an object). A similar example can be found on Earth. Water is the warmest on its surface. The lowest temperatures are in the deepest waters, if geological warmings are excluded (hot spots). Energy, different kinds of radiation and visible matter (which does not create its own warmth by geological processes) are very cold. The temperature of visible matter, when sources of radiation are not there at all or when they are too far, tends to be absolute zero (0°K).
Space is the purest vacuum, but only if related to visible matter. According to evidence and definition, vacuum does not create friction which could reduce the intensity of radiation waves. A smaller part of particles in space, when collided by waves of radiation, turn into high-energy particles.
Quote: Different kinds of matter coexist one by the other and the transition from one into the other is more or less defined. That is impossible between matter and vacuum, because the pressures of matter and vacuum always tend to equalize and that is not what can be seen between the atmosphere and vacuum and with the gas (particle) gathering into nebulae, etc.
Right here, just outside (even inside) the atmosphere, there is the kind of matter, which is known to us, which had been defined and its influence on the visible matter calculated – it only remains to be detected. end quote [34] 
If we push water out of a bowl, which is placed under water, it starts moving towards space with a lower pressure. The same thing happens to a balloon filled with helium.

3.2. Light
Light appears on the place of collision between radiation waves and particles. If there is no radiation, or if it is minimal, matter is very cold. If there is no visible matter, space warms up  (80 to 180°K), just as visible matter. An important difference is that space does not produce light in collisions with radiation, no matter the intensity or sort of radiation.
Warmth and light are produced only by visible matter. The light of Sun disappears immediately after leaving the atmosphere of Sun or with the disappearance of visible matter. Temperature drastically falls after leaving the atmosphere, but it does not disappear immediately (80 to 100°K) – it gradually diminishes with the increase of distance through space. It does not matter, whether to name a space between a source and an object as invisible matter or just space. The important fact is that invisible space actively supports the processes that can be recognized in the visible mattter, too.
Space equals complete dark. Light appears only on objects (nebulae,  planets,  etc ). If there is no visible matter, there is no light. Stars (Sun - on the image) do not emit light, stars emit radiation. Light appearance and temperature growth occur in the collision of radiation and visible matter. There is no light immediately outside the atmosphere of Sun. [35] 

4. Conclusion
Rotation and attracting matter create systems. Gravity without the effect of rotation, does not create systems.
The force of attraction (gravity) and the rotation of objects are basic preconditions to create dual or more complex systems (spherical and other groups of stars, galaxies and groups of galaxies). If gravity was the only existing or even dominating force, there would be no universe at all. Without the main creator of all systems – the rotation of objects, which places the falling objects into their orbits – the objects would fall vertically one upon the other. Rotation should not be observed only in the frame of a rotating object, but as a whole of an object and the space, with the attraction forces in it. Not only an object rotates, but the forces within its space rotate with it, too. [36]
 The rotation acts as antigravity. Due to the rotation, the antigravitational forces are changing the course of movement of the incoming objects from straight into round or ellyptic, around the bigger rotating object. In that way, the collapse of the minor part of that mass or these objects, existing in a new way, does not occur.[37]
The rotation creates vortexes and cyclones (at the poles) in the center of galaxies and stars.  Central objects in the centres of the galaxies observe more complex laws that are not based on the physical black holes. Beginning from the stars the size of our Sun, even the low speed rotations cause polar cyclones, which will in time turn into whirlwinds of the galactic size (up to 30 000 light-years). They are able to hold together such a massive objects; the rotation of matter around a whirlwind holds the whole galaxy together. [38]
  Greater distance weakens the intensity (force) of waves (radiation). Lesser intensity of waves is registered as a greater shift into red.
A very important fact needs to be stressed here: although after certain distance only red shift is registered, at the same time – on that and on all other distances – the collisions of galaxies are registered, or the blue shift between the objects in collision . There is an increase of speed along with the weakening of the intensity of waves, but by no means in numbers that are these days taken as an undeniable evidence. The rotation of the clusters of galaxies (speeds of movement by orbits) and the Universe (the rotation) is occurring many times slower. [39] 

Madam  Sylvie Wallimann-Crépin's Editorial Committee of EPD Sciences (2004) for the first boost at the beginning of the research.
Professor Zoran Ćoso, University of Zadar, for the translations in English and Russian.
My wife, Ranka Sedić, who funds this independent research.
[1]. W.Duckss,  „Constant proces“
[2]. W.Duckss 7/2018
[3]. W.Duckss
[4]. W.Duckss..
[5] W.Duckss
[6] W.Duckss.. 
[7] W.Duckss  „Rotation of an object“
 [8] Oct. 26, 2017 „Small Asteroid or Comet 'Visits' from Beyond the Solar System“
[9] Nov. 20, 2017 "Solar System’s First Interstellar Visitor Dazzles Scientists"
[10] W.Duckss „What are the dimensions of destruction and creation in the Universe?“, Article No 7.
[11] W.Duckss Article No 2.
[12] W.Duckss „The causal relation between a star and its temperature, gravity, radius and color“ Article No 1.
[13] W.Duckss 
[14]  „The non-gravitational interactions of dark matter in colliding galaxy clusters“ David Harvey1,2∗ , Richard Massey3 , Thomas Kitching4 , Andy Taylor2 , Eric Tittley2
[15] W.Duckss  „Why did CERN fail?“ Article No 3.
[16] W.Duckss "What are the dimensions of destruction and creation in the Universe?" Article No 7.
[17] W.Duckss „Why is the Universe cold?“
[18] W.Duckss
[19] W.Duckss there is a ring, an asteroid belt or a disk around the celestial objects?“ Article No 3.
[20] W.Duckss   [21] W.Duckss  „Observing the quasars through rotation“ „The Reverse Influence of Cyclones to the Rotation of Stars“ Article No 2. [22] „Supermassive Black Hole’s Dizzying Spin is Half the Speed of Light“ Article written: 5 Mar , 2014Updated: 23 Dec , 2015 by Elizabeth Howell [23] March 5, 2014 Release 14-069 "Chandra and XMM-Newton Provide Direct Measurement of Distant Black Hole's Spin"
[24] „CALIFA reveals Prolate Rotation in Massive Early-type Galaxies: A Polar Galaxy Merger Origin?“ Athanasia Tsatsi, Mariya Lyubenova, Glenn van de Ven, Jiang Chang, J. Alfonso L. Aguerri, Jesús Falcón-Barroso, Andrea V. Macciò (Submitted on 17 Jul 2017)      [25] APM 08279+5255 etc [26]
[28] „The Milky Way Galaxy“  
[29] W.Duckss „Functioning of the Universe“ [30] Oct. 26, 2017 „Small Asteroid or Comet 'Visits' from Beyond the Solar System“
[31] Nov. 20, 2017, "Solar System’s First Interstellar Visitor Dazzles Scientists"
[32] the orbit of Comet ISON
[33] „Solar Radiation in Space“ Christiana Honsberg and Stuart Bowden
[34] W.Duckss  Article No 1.
[35] W.Duckss
[36] W.Duckss  Https://
[37] W.Duckss „The relations in the Universe“
[38] W.Duckss  „The forbidden article: Gravity and anti-gravity“ Article No 4.
[39] W.Duckss

Effects of rotation ; Forming a galaxy; Dark matter; Light;


Procesi koji djeluju u Svemiru

Djelovanje privlačnih sila u svemiru (gravitacija) stvara stalni proces rasta.

krateri ktateri1 krateri2

krateri3 krateri4

Privlačenje materije povećava masu tijela. Na Zemlju pristigne ~ 140 tona svakodnevno novog materijala.

stalni-rast stalni-rast1
Prvo se okuplja plin u maglice, stalnim privlačenjem nastaje prašina, mala tijela asteroidi (kometi), planetoidi, sustavi planeta, mali zvijezdani sustavi, veći zvijezdani sustavi, binarni sustavi zvijezda, skupovi zvijezda, galaksije, klasteri galaksija, super klasteri galaksija .. „Klasteri su najveći poznati gravitacijski vezani konstrukti u svemiru i vjerovali su da su najveće poznate strukture u svemiru sve do osamdesetih godina, kada su otkriveni superklasteri .“ Wikipedia
Superclusters su za sada najveći skupovi galaksija (klastera galaksija, grupa galaksija i galaksija) koji su gravitacijski povezani koji rotiraju oko nekog centra.

sudari-tijela sudari-tijela-i-sustava sudari-galaksija-Hubble-teleskop

"Osim što klasteri rotiraju, oni se spajaju u veće stukture i tvore superklastere sljedeću cjelinu koja također rotira „Korištenje Chandra i Hubble svemirski teleskopi sada smo primijetili 72 sudara između galaktičkih klastera, uključujući i velika i mala spajanja”."


rotacija rotacija1 rotacija11 rotacija2 rotacija 3

Sve u svemiru rotira oko neke vrste centra (izuzev plimno zaključanih tijela (Merkur, Venera, veliki dio unutarnjih satelita planeta)). Tijela kruže oko centralnog tijela isključivo zbog rotacije centralnog tijela. Ako tijelo nema samostalnu rotaciju ili je ekstremno spora nema drugih tijela oko sebe u orbitama (Merkur, Venera, unutarnji sateliti).


svjetlost svjetlost1 svjetlost1 svjetlost2 svjetlost4 svjetlost5

Svemir je potpuni mrak. Pojavu svjetlosti mi imamo samo na tijelima (maglicama, .. planetima, ..). Ako nema vidljive materije, nema svjetlosti. Zvijezde (Sunce na slici) ne emitiraju svjetlost, zvijezde emitiraju zračenja. U sudaru zračenja sa vidljivom materijom nastaje svjetlost i raste temperatura. Nema svjetlosti odmah izvan atmosfere sunca.

Plavi i crveni pomak svjetlosti (na Zemlji)

plavi-i-crveni-pomak-svjetlosti red-moon zalazak-sunca

Slike izlaska sunca pokazuju crveno svjetlo suprotno Doppler effect.
Isto je na trećoj slici. Drugi red fotografija su snimci zapada (Zadar). Prvi red slika, na slici trećoj, su snimci u suprotnom pravcu (istok, jugo i sjevero istok). U prvom redu mi imamo crvenilo iako svjetlost od nas odlazi što je suprotno tvrdnjama da Doppler effect stvara crvenu nijansu na nebu.
Na skici mjeseca vidljiv je stvarni razlog postojanja crvene boje. Crvena nijansa dolazi sa smanjivanjem intenziteta zračenja (svjetlosti (na crvenom mjesecu nema sunčeve svjetlosti).

Plavi i crveni pomak svjetlosti u Svemiru (Moj komentar u

"It means that if 10 Mpc equals 32,6 millions of light-years
then Hubble's law doesn't apply for galaxies and objects, the values of which are more easily determined." Wikipedia
Let's check that on the distances at which Hubble's law should apply:

RMB 56 distance 65,2 Mly… blue shift.. -327 km/s…….(65,2 Mly x Hubble c. = -327 km/s Ha, ha..)
NGC 4419........56 Mly……..........-0,0009 (-342 km/s)…..(56 x H C = -342 km/s ..)
M90...............58.7 ± 2.8 Mly..........−282 ± 4 km/s……….(58,7 x H c = -282 km/s)"
+ "compiled a list of 65 galaxies in Virgo with VLG < 0 (blue shift). Distance 53.8 ± 0.3 Mly (16.5 ± 0.1 Mpc)"
"Again, there is nothing in accordance with the constant and Hubble's law!" ..(53,8 Mly x Hubbl c. = 0 to -866 km/s ..Ha..)
Who lies? Autor or evidence? In the translations: a person who talks without a background (evidence) or scientific evidence?

If " "Objects observed in space - extragalactic space, 10 (Mpc)" = ~700 km/s
"NGC 7320c distance 35 Mly, speed 5.985 ± 9 km/s…(~10 Mpc x Hubble c. = 5.985 ± 9 km/s.. ha, ha..)
NGC 4178..............43 ± 8...................377 km/s
NGC 4214...............44.........................291 ± 3
M98 ........................44.4 ...............−0.000113 ± 0.000013
Messier 59...............60 ± 5..................410 ± 6
NGC 4414................62,3 ....................790 ± 5
NGC 127................188........................409 etc....

The Laniakea Supercluster.......250 Mly.......+0,0708 (z)
Horologium_Supercluster ........700 Mly..........0,063
Corona Borealis Supercluster ...946 Mly..........0,07 etc...
(The galaxy is distant 250 Mly is faster (has a bigger red shift) than the galaxy at the distance 700 and 946 Mly ..)

Q0906 + 6930 ..................12,3 Gly.....5,47.(z)...speed ....299,792 km/s 
Z8 GND 5296...................13,1 Gly....7,5078±0,0004.......291.622 ± 120 km/s
GN-z11..............................13,4 Gly...11,09.......................295.050 ± 119.917"
Who lies? .....
Object with red shift. 5.47 is faster than objects with red shift 7.05 and 11.09 ha, ha. Authors Hubble constant really need to go back to elementary school and learn math (basic for kids).



nastaviti će se.


Demoliranje Hubble's law, Big Bang, osnova "moderne" i crkvene kozmologije

English  Demolition Hubble's law, Big Bang the basis of "modern" and ecclesiastical cosmology
Pусский Снос закон Хаббла, Big Bang, основа “современной” и церковную космология

„Ako su dva predmeta predstavljani kugličnim ležajevima i prostornim vremenom istezanjem gumenog lima, učinak Dopplera uzrokovan je valjanjem kuglica preko listova kako bi se stvorio neobičan pokret.  Kozmološki crveni pomak događa se kada su kuglični ležajevi zaglavljeni na listi i list je rastegnut.“ Wikipedia
Dobro, provjerimo to na našoj lokalnoj skupini galaksija (tablica iz moga članka „Where did the blue spectral shift inside the universe come from?“)

Hubble constant "Za većinu druge polovice 20. stoljeća vrijednost procijenjeno je između 50 i 90 (km / s) / Mpc . (danas postoji nekoliko konstanti, sve su oko 70 km/s)."
Opet ne valja nešto sa zakonom i konstantom!  M90 je udaljena 58.7 ± 2.8 Mly i gle čuda, ima plavi pomak od −282 ± 4 km/s ! 
Galaksije na udaljenosti 32,6 Mly prema, tko zna čijoj konstanti, trebaju imati oko 700 km/s, na dvostrukoj udaljenosti od 65,2 Mly trebaju imati brzinu udaljavanja oko 1.400 km/s, itd.
Zanimljivo je da

NGC 1.600 je udaljena 149,3 Kly i ima brzinu 4.681 km/s, 
NGC 7320c
je udaljena 35 Mly ima brzinu (red shift) 5.985 ± 9,
NGC 5010
je udaljena 140 Mly i ima brzinu od 2.975 ± 27!
NGC 280 je udaljena 464 Mly i ima brzinu od 3.878! ...

Ovi dečki i cure koji vrše mjerenja su nešto promašili ili je neupotrebljiv Hubble´s zakon i konstanta (bilo čija vrijednost konstante).

Na udaljenosti od 52 ± 3 (M86) imamo plavi pomak (-244 ± 5 km/s) koji imamo i kod galaksije M90  na udaljenosti 58.7 ± 2.8 (−282 ± 4), dok su ostale galaksije na istoj udaljenosti (Messier 61, NGC 4216 , Messier 60, NGC 4526, Messier 99, NGC 4419) sa pozitivnim predznakom (osim NGC 4419 -0,0009 (-342)) i potpuno različitim brzinama.



Weitter Duckss teorija svemira

English Weitter Duckss's Theory of the Universe
Pусский Теория Вселенной Веиттера Дуксса


U potrazi za izgubljenim svemirom ( knjiga- 2008.g.)

Kratka knjiga. Građa knjige je o Svemiru, utkana je u svakodnevnicu i poratna zbivanja, prožeta humorom i zamišljenim razgovorima sa autorima radova o kojima se raspravlja dok nastaje novi rad.


1 Rasprava sa Hawkingom   2 Fotoni javite se
3 Hubbleova konstanta   4 CERN-ova unaprijed izgubljena bitka ...


Članci objavljeni u:

The Intellectual Archive Journal;„Why do Hydrogen and Helium Migrate“ April 2019.

International Journal of Sciences
DOI: 10.18483/ijSci.1908 "Effects of Rotation Around the Axis on the Stars, Galaxy and Rotation of Universe" march 2019

American Journal of Astronomy and Astrophysics.
DOI: 10.11648/j.ajaa.20180603.13 "The processes which cause the appearance of objects and systems" november 2018 2017 .y. 5.2017.y. 30.7.2017.y. 7/2018 31.08.2017.y. 13.10.2017.y. 11.2017.  2018.y. 2018 Duckss profil) etc. Universe and rotation The observation process in the universe etc. и т.д.

facebook, (comments on articles;; NASA


Memorial center Nikola Tesla Croatia, Smiljan


Nikola-Tesla Memorijalni Centar Nikola Tesla, Smiljan, Coratia